爱博在线官方手机版爱博在线官方手机版

爱博在线备用客户端
lovebet体育备用手机版

The CURD(增删查改) operation of DataFrame in python[Create]

注:安装pandas自行完成:pip install pandas!

一、Create(增加、创建DataFrame)

在pandas里,DataFrame是最经常用的数据结构,这里总结一下:①、把其他格式的数据整理到DataFrame中;②在已有的DataFrame中插入N列或者N行。

1. 字典类型读取到DataFrame(dict to DataFrame)

假如我们在做实验的时候得到的数据是dict类型,为了方便之后的数据统计和计算,我们想把它转换为DataFrame,存在很多写法,这里简单介绍常用的几种:方法一:直接使用pd.DataFrame(data=test_dict)即可,括号中的data=写不写都可以,具体如下:

test_dict = {"id":[1,2,3,4,5,6],"name":["Alice","Bob","Cindy","Eric","Helen","Grace "],"math":[90,89,99,78,97,93],"english":[89,94,80,94,94,90]}#[1].直接写入参数test_dicttest_dict_df = pd.DataFrame(test_dict)#[2].字典型赋值test_dict_df = pd.DataFrame(data=test_dict)

那么,我们就得到了一个DataFrame,如下:

应该就是这个样子了。方法二:使用from_dict方法:

test_dict_df = pd.DataFrame.from_dict(test_dict)

结果是一样的,不再重复贴图。其他方法:如果你的dict变量很小,例如{"id":1,"name":"Alice"},你想直接写到括号里:

test_dict_df = pd.DataFrame({"id":1,"name":"Alice"}) # wrong style

这样是不行的,会报错ValueError: If using all scalar values, you must pass an index,是因为如果你提供的是一个标量,必须还得提供一个索引Index,所以你可以这么写:

test_dict_df = pd.DataFrame({"id":1,"name":"Alice"},pd.Index(range(1)))

后面的可以写多个pd.Index(range(3),就会生成三行一样的,是因为前面的dict型变量只有一组值,如果有多个,后面的Index必须跟前面的数据组数一致,否则会报错:

pd.DataFrame({"id":[1,2],"name":["Alice","Bob"]},pd.Index(range(2))) #must be 2 in range function.

关于选择列,有些时候我们只需要选择dict中部分的键当做DataFrame的列,那么我们可以使用columns参数,例如我们只选择"id","name"列:

test_dict_df = pd.DataFrame(data=test_dict,columns=["id","name"]) #only choose "id" and "name" columns

这里就不在多写了,后续变更颜色添加内容。

2. csv文件构建DataFrame(csv to DataFrame)

我们实验的时候数据一般比较大,而csv文件是文本格式的数据,占用更少的存储,所以一般数据来源是csv文件,从csv文件中如何构建DataFrame呢? txt文件一般也能用这种方法。方法一:最常用的应该就是pd.read_csv("filename.csv")了,用 sep指定数据的分割方式,默认的是","

df = pd.read_csv("./xxx.csv")

如果csv中没有表头,就要加入head参数

3. 在已有的DataFrame中,增加N列或者N行

加入我们已经有了一个DataFrame,如下图:

3.1 添加列此时我们又有一门新的课physics,我们需要为每个人添加这门课的分数,按照Index的顺序,我们可以使用insert方法,如下:

new_columns = [92,94,89,77,87,91]test_dict_df.insert(2,"pyhsics",new_columns)#test_dict_df.insert(2,"pyhsics",new_columns,allow_duplicates=True)

此时,就得到了添加好的DataFrame,需要注意的是DataFrame默认不允许添加重复的列,但是在insert函数中有参数allow_duplicates=True,设置为True后,就可以添加重复的列了,列名也是重复的:

3.2 添加行此时我们又来了一位新的同学Iric,需要在DataFrame中添加这个同学的信息,我们可以使用loc方法:

new_line = [7,"Iric",99]test_dict_df.loc[6]= new_line

但是十分注意的是,这样实际是的操作,如果loc[index]中的index已经存在,则新的值会覆盖之前的值。

当然也可以把这些新的数据构建为一个新的DataFrame,然后两个DataFrame拼起来。可以用append方法,不过不太会用,提供一种方法:

test_dict_df.append(pd.DataFrame([new_line],columns=["id","name","physics"]))

本想一口气把CURD全写完,没想到写到这里就好累。。。其他后续新开篇章在写吧。相关代码:(https://github.com/dataSnail/blogCode/blob/master/python_curd/python_curd_create.ipynb)(在DataFrame中删除N列或者N行)(在DataFrame中查询某N列或者某N行)(在DataFrame中修改数据)

欢迎阅读本文章: 岳女士

lovebet国际备用登录

爱博在线备用客户端